
Copyright is held by the author / owner(s).
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012.
ISBN 978-1-4503-1435-0/12/0008

Use of CUDA Streams for Block-Based MPEG Motion Estimation on the GPU

Mai H. El-Shehaly
Virginia Tech

Denis Gračanin
Virginia Tech

Hicham G. Elmongui
Alexandria University

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

Scenario 1

Scenario 2

Scenario 3

Figure 1: (a) Block-based SAD calculation; (b) Scenario 1: memory transfers (rectangles) and GPU processing (ovals); (c) per block 2D
Parallel Reduction to find minimum SAD; (d) run times for three scenarios.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics Processors;

Keywords: MPEG-4, Motion Estimation, GPU computing

1 Introduction

The H.264 standard of MPEG-4 includes motion estimation that
takes about 91% of encoding time. Luckily, the problem of block-
based motion estimation is highly parallel. Motion vectors are cal-
culated by determining block displacement within an area, typically
32× 32 pixels, in a known reference frame. We enhance the GPU-
based Sum of Absolute Difference (SAD) calculations of motion
estimation using CUDA streams to hide memory latency by means
of different overlapping techniques. A novel implementation strat-
egy is explored that takes advantage of the amount of shared mem-
ory available in GPU devices of compute capability 2.x.

2 Our Approach

Each frame in a YUV video sequence, of size M ×N is streamed
from page-locked host memory to GPU device, where a grid of
M/4 × N/4 blocks of threads is created. Each block contains
32×32 threads (a total of 1024 threads per block). Each block loads
from device global memory to the block’s shared memory: 4 × 4
pixels from the current frame and 32×32 pixels from the reference
frame. From this point on, all per block calculations are performed
locally without having to read/write from/to device global mem-
ory. Each thread then calculates one element of a 32 × 32 matrix
of SAD values for each candidate displacement within the search
range, evaluated as:

SADk,l(v) =
∑

(i,j)∈Bk,l

|It+1(i, j)− It(i+ v1, j + v2)|

where v = [v1, v2]
T is the block displacement for block Bk,l,

It(i, j) and It+1(i, j) are image intensities at pixel (i, j) in the ref-
erence frame, and in the current frame, respectively. The resulting
matrix is stored in shared memory, where further calculations are
performed to get SAD values for variable block modes (4×8, 8×4,
8× 8) by activating only evenly indexed threads in the x-direction,
the y-direction, or both. Once all SAD values are in shared mem-
ory, the current thread block decides on the minimum SAD value,
by extending the parallel reduction technique [Harris 2007] to 2-D.

We experimented using three different scenarios: In Scenario 1,
memory uploads, kernel launches, and memory downloads are all
grouped inside one loop over CUDA streams. Kernels are not exe-
cuted in parallel. In Scenario 2, memory uploads, kernel launches,
and memory downloads are each performed in their own separate
loops. No overlap occurs between memory copies and kernel ex-
ecution except between the last stream’s memory upload with the
first kernel launch, and the last kernel launch with the first memory
download. In Scenario 3, (no CUDA streams) frames are trans-
ferred one by one to texture memory. The calling thread acquires
a lock before sending a frame, and it cannot release the lock until
the current frame data have been processed by all blocks in the ex-
ecution grid. The efficient use of CUDA streams has significantly
reduced the amount of time required to process the entire sequence.
Scenario 1 performed best, because of the overlap of kernel execu-
tion with memory transfers, which is the ideal scenario for latency
hiding. Scenario 2 takes on average 15% longer to execute, which
can be worsened by higher resolution frames, due to more severe
memory transfer latencies. Scenario 3 relies solely on GPU paral-
lelism, and makes no use of CUDA streams. Therefore, on average
it takes 83% longer to execute. Our technique achieves up to 3×
speedup for variable SAD calculations over the work in [Chen and
Hang 2008], when normalized to the same frame size (176× 144),
time is reduced from 3.384 ms to 1.187 ms per frame. Such speedup
was achieved through the elimination of global memory accesses,
and the use of CUDA streams. The proposed latency hiding tech-
nique can be used to speedup implementations of more MPEG-4
encoding steps, which will be the focus of our future work.

References

CHEN, W., AND HANG, H. 2008. H.264/AVC motion estimation
implmentation on compute unified device architecture (CUDA).
In Proceedings of the 2008 IEEE International Conference on
Multimedia and Expo, IEEE, 697–700.

HARRIS, M. 2007. Optimizing parallel reduction in CUDA. CUDA
SDK white paper, NVidia.

